CHROM. 5194

Identification of organic compounds LXXV^{*}. Paper and thin-layer chromatography of simple *s*-triazine derivatives

During the investigation of the hydrolysis of technologically important striazine derivatives it was necessary to carry out analyses of the reaction mixtures and to identify the hydrolysis products, especially the hydroxy and amino derivatives of s-triazine. The use of some of the usual chromatographic techniques seemed to be hopeful for this purpose. A review on the chromatography of s-triazine derivatives has been published recently¹. Most of the work involved in this review as well as other contributions in the chemical literature deal with compounds used as herbicides²⁻⁵ or melamine resins⁶⁻¹⁶. Our interest was especially directed to cyanuric acid and melamine which have been dealt with by only a few authors¹⁶⁻²².

From this work and our preliminary experiments it was evident that no troubles should be expected in finding a suitable solvent system. But a critical evaluation of the detection reagents that had been recommended previously seemed to be necessary. The detection reagents were expected to be of great importance in the evaluation of the chromatograms of the complex hydrolysis products. The reagents recommended by previous authors have been summarised in Table I.

It is evident that there is a series of colour reactions available for the detection of melamine on chromatograms whereas cyanuric acid is only detected with some difficulty. Thus, *e.g.* melamine, ammeline and ammelide have been detected easily using reagent V on chromatograms of the reaction mixture after the acid hydrolysis of melamine resins⁸, but the identification of cyanuric acid is only achieved after

TABLE I

METHODS OF DETECTION OF S-TRIAZINE DERIVATIVES®

No.	Reagent	Cyanuric acid	Melamine	References
I	Ehrlich's reagent		-1-	7. 11. 13
II	Ammoniacal AgNO _a			7. 10. 17
111	Dichloroquinonechloroimine			7.10
1V	Chlorine + o-tolidine		- i -	6
V	Potassium ferricyanide + sodium		•	
	nitroprusside + NaOH		-1-	7.8
VI	Picric acid			9
VII	Iodine–potassium iodide		- -	11
VIII	Formaldehyde + ammonium nitrate +		•	
	sodium acetate + Ponceau 6R		-+-	12
IX	Formaldehyde + argent nitrate			I4
X	Antimony(III) chloride		- - -	10
XI	Brucine			10
XII	o-Tolidine			10
XIII	Ninhydrin			10
XIV	8-Hydroxyquinoline + fluorescein	_		10
XV	Formaldehyde + Schiff's reagent			10
XVI	Mercury acetate + diphenylcarbazone	- -	•	20
$\mathbf{X}\mathbf{V}\mathbf{\Pi}$	Ammoniacal copper acetate	- -		16

^a + Positive reaction; - negative reaction.

* Part LXXIV: J. Chromatogr., 54 (1971) 436.

NOTES

total hydrolysis in the classical manner by isolation and conversion into a violet precipitate with an ammoniacal solution of copper hydroxide.

During our experiments the solvent system I-propanol-ammonia (2:1) proved to be useful for paper chromatography. Both this solvent system and I-butanol saturated with ammonia were found to be suitable for the thin-layer chromatographic separation. A good resolution of the hydrolysis products and the starting compounds was achieved in these systems and the spots of cyanuric acid and other hydroxy and amino derivatives of s-triazine were well-formed and round.

The combination of the following two methods of detection proved to be the most convenient: spraying with mercury acetate and diphenylcarbazone to detect the hydroxy and amino derivatives and spraying with formaldehyde and Schiff's reagent to detect the amino derivatives.

Experimental

Paper chromatography. Whatman No. 3MM paper and the solvent system 1-propanol-ammonia (2:1) were used throughout all the experiments. $5 \mu l$ of 5%

rable 11

 R_F values of *s*-triazine derivatives

Solvent systems: $S_1 = 1$ -propanol-ammonia (2:1); $S_2 = 1$ -butanol saturated with 2	25% ammonia; Detec
tion methods: D_1 = mercury acetate + diphenylcarbazone; D_2 = silver nitrate + pota	issium hydroxide; $D_a =$
formaldehyde + Schiff's reagent.	

Compound			PC	TLC		Detection		
R ₁	R_2	R_{3}		$\overline{S_1}$	S_2	$\overline{D_1}$	D_2	D ₃
 ОН	OH	OH	0.25	0.42	0.23	blue violet	white	
NH.	NH.	NH.	0.27	0.30	0.31	blue	white	carmine
Phenyl	NH.	NH.	0.77	0.88	0.87	blue	white	blue violet
p-Tolvl	NH.	NH	0,80	0.88	0.87	blue	white	blue violet
o-Chlorophenvl	NH.	NH.	0.79	0.88	0.87	blue	white	blue violet
p-Cyanophenyl	NH	NH.	streak			blue	white	blue violet
Phenyl	он	он	0.62	0,80	0.60	blue violet	white	
p-Tolvl	OH	OH	0.63	0.83	0.63	blue violet	white	
m-Tolvi	ОН	OH	0.66	0.83	0.63	blue violet	white	
p-Cyanophenyl	ОН	OH	0.66	0.84	0.63	blue violet	white	. <u> </u>
p-Hydroxyphenyl	OH	OH	0.57	'	¥	blue violet	white	
p-Methoxyphenyl	ОН	OH	0.82	0.73	0.55	blue violet	white	· ·
Bis(hvdroxyethyl)-				10	00			
amino	NH.	NH_{2}	0.38			blue	white	blue viole
-NH·C.H.	-NH·C.H.	$-NH \cdot C_{a}H_{5}$	0.94	a	0.97	blue		blue viole
OCH,	он ँ	он	0.43			blue violet	white	
OCH.	OCH _a	OH	0.54			blue violet	white	
OCH.	OCH.	OCH,	0.77			blue violet	white	
Phenylene-bis-(diamino-s-triazine)			streak			blue	white	blue viole

J. Chromatogr., 56 (1971) 342-344

solutions of s-triazine derivatives in dimethylsulphoxide were applied on the starting line and the development was carried out overnight.

Thin-layer chromatography. Thin layers were prepared in the usual manner using Cellulosepulver No. 142 dg (Schleicher and Schüll), the thickness of the layer being 0.5 mm. The systems 1-propanol-ammonia (2:1) (S₁) or 1-butanol saturated with ammonia (S_2) were both used as mobile phases.

Detection method D_1 . The chromatogram was sprayed with an ethanolic solution of mercury acetate (0.25 g of mercury acetate dissolved in 100 ml of 96% ethanol with 2 drops of acetic acid added) and after drying was sprayed with a 0.05% alcoholic solution of diphenylcarbazone. Then the chromatogram was heated in a drying oven at 125° for 3-5 min until the blue violet background had disappeared.

Detection method D_2 . The chromatogram was drawn through a freshly prepared solution of silver nitrate in acetone (100 ml of acetone mixed with 1 ml of a 5% aqueous solution of $AgNO_3$) and after drying it was sprayed with a (1:1) mixture of a 5% aqueous KOH solution and ethanol.

Detection method D_{3} . The chromatogram was sprayed with a diluted formaldehyde solution (2 ml of formaldehyde diluted with 48 ml of water) and dried at 120-140°. Then the Schiff's reagent (0.5 g fuchsin dissolved in 350 ml of water and 25 ml of I N HCl to which 2.3 g of sodium metabisulphite was then added and the solution diluted to 500 ml with water) was applied.

Using detection method D_1 as little as 0.01-0.025 μ g of cyanuric acid were still detectable. The results of our study are summarised in Table II.

Research Institute of Organic Syntheses, Pardubice-Rybitví (Czechoslovakia)

A. CEE J. GASPARIČ

- I L. FISHBEIN, Chromatogr. Rev., 12 (1970) 167.
- 2 J. PERKAVEC, M. PERPAR AND D. BRODNIK, Mikrochim. Acta, (1969) 1224.
- 3 R. J. HANCE, J. Chromatogr., 44 (1969) 419. 4 P. E. BELLIVEAU, V. MALLET AND R. W. FREI, J. Chromatogr., 48 (1970) 478.
- 5 J. R. PLIMMER, P. C. KEARNEY AND U. I. KLINGEBIEL, Tetrahedron Lett., (1969) 3891. 6 J. ŠRÁMEK AND L. LAŠ, Textil, 17 (1962) 148, 302.

- 7 J. E. MILKS AND R. H. JANES, Anal. Chem., 28 (1956) 846. 8 L. MECKEL AND H. MILSTER, Text.-Rundsch., 16 (1961) 593; 17 (1962) 485.
- 9 M. LUCIANI, Indicat. Grafico, Suppl. No. 9 (1964) 10; C. A., 63 (1965) 18453d.
- 10 H. BIELING AND G. WENZEL, Plaste Kautschuk, 11 (1964) 409.
- 11 M. CHENE, D. MOREL AND M. DUBOURGEAT, Papeterie, 87 (1965) 264; C.A., 63 (1965) 3114h.
- 12 L. CUSVELLER, Tex, 20 (1961) 727; C.A., 62 (1965) 2870h. 13 L. PLATH, Holz Roh. Werkst., 19 (1961) 489; C. A., 56 (1962) 14454c.
- 14 K. H. PFAFF, Melliand Textilber., 40 (1959) 802. 15 L. MECKEL, H. MILSTER AND U. KRAUSE, Text. Prax., 16 (1961) 1032.
- 15 L. MECKEL, II. MILSTER AND C. MAROSE, 1240. 1744., 10 (1901) 1032.
 16 H. ZIENER, Deut. Farben-Z., 19 (1965) No. 2, 57; C.A., 62 (1965) 12016h.
 17 E. KNAPPE AND J. ROHDEWALD, Z. Anal. Chem., 223 (1966) 174.
 18 J. C. BROWN, J. Soc. Dyers Colour., 80 (1964) 185.
 19 K. REHNELT, Monatsh. Chem., 86 (1955) 653.
 20 E. C. B. AMMANN AND V. H. LYNCH, Anal. Biochem., 7 (1964) 387.

- 21 P. C. KEARNEY, D. D. KAUFMAN AND T. J. SHEETS, J. Agr. Food Chem., 13 (1965) 369.
- 22 M. V. NADKARNI, E. I. GOLDENTHAL AND P. K. SMITH, Cancer Res., 14 (1954) 559. 23 C. P. A. KAPPELMEIER AND J. MOSTERT, Verfkronick, 29 (1956) 40.

Received December 8th, 1970

J. Chromatogr., 56 (1971) 342-344